
Naval Research Laboratory
Stennis Space Center, MS 39529-5004

NRL/FR/7181--93-943O::

Parallel and Vector Adaptations
of the Underwater Finite Element
Parabolic Equation Model

ROBERT A. ZINGARELLI

Acoustic Simulations and Tactics Branch
Center for Environmental Acoustics

August 18, 1993

Approved for public release; distribution unlimited.

I

-REPORT DOCUMENTATION PAGE T Folm Approved

Public reporting burden for this collection of Information is estimated to average 1 hour per response, Including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden or any other aspect of this collection
of Information, Including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports. 1215 Jefferson Davis
Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Papesrd Reduction Project (07040188), Washington, DC 20503.
1. AGENCY USE ONLY (Leave bank) .REPORT DATE 3. REPORT TYPE AND DATES COVERED

August 18, 1993 Final
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Parallel and Vector Adaptations of the Underwater JobOrderNo. 571506003
Finite Element Parabolic Equation Model ProgramElementNo. 0602435N

6. AUTHOR(S) Pmject No. RJ35001

Robert A. Zingarelli Task No. JOV
Accession No. DN250019

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Naval Research Laboratory
Center for Environmental Acoustics NRL/FR/7181--93-9430
Stennis Space Center, MS 39529-5004

9. SPONSORINGIMONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORINGIMONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTIONWAVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited

13. ABSTRACT (Max/muna 200 vwn)

This report describes optimization techniques for several vector and parallel versions of FEPE, a finite element under-
water parabolic equation model code. Algorithms are presented for solving linked tridiagonal systems of equations, when
the chief computational bottleneck is in FEPE on parallel, massively parallel, and vector machines. Sample execution times
for a standard benchmark problem are also given. A broadband version of FEPE, which is highly efficient on vector
computers and can be combined with parallel algorithms for even higher performance is presented.

14. SUBJECT TERMS 15. NUMBER OF PAGES

underwater acoustics, active acoustic propagation, surface scattering, ambient noise 16. PRICECODE

17. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. UMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified Same as report

NSN 7540-01-280-5500

i
Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

cr.1

>ill

r_-1

c~l1

ci-'

CONTENTS

1.0 INTRODUCTION .. 1

2.0 FEPE AND SUPERCOMPUTERS: A PEDESTRIAN'S GUIDE .. 1

3.0 ALGORITHMS .. 1

3.1 Chunk Algorithms ... 2
3.2 Cyclic Reduction .. 3
3.3 Broadband Techniques ... 5
3.4 Split Solver Sections Executed in Parallel .. 5

4.0 APPLICATIONS AND RESULTS .. 5

5.0 SUMMARY .. 8

6.0 ACKNOWLEDGMENTS .. 8

7.0 REFERENCES .. 8

iii

4I:n

PARALLEL AND VECTOR ADAPTATIONS OF THE UNDERWATER
FINITE ELEMENT PARABOLIC EQUATION MODEL

1.0 INTRODUCTION

A finite element parabolic equation (FEPE) model code was developed and optimized for a
conventional single-instruction/single-data (SISD) computer [1]. Subsequent acquisition of several
supercomputers by the Naval Research Laboratory (NRL) and the Naval Oceanographic Office
(NAVOCEANO), coupled with increased demands for performance by this code, spurred investi-
gation into optimization of FEPE on supercomputers. This report briefly describes FEPE and why,
in its SISD optimized form, it does not execute efficiently on supercomputers; the algorithms used
in optimizing FEPE for several -supercomputer architectures; and a brief users guide to optimized
and verified versions of the code.

2.0 FEPE AND SUPERCOMPUTERS: A PEDESTRIAN'S GUIDE

FEPE is fully documented for users in the "FEPE User's Guide" [1], and the algorithms and
methods used are described in more detail in Ref. 2. Briefly, at each range step FEPE uses the
Galerkin FE method to generate two linked tridiagonal sets of coupled equations (one equation for
each vertical grid element, and a set of equations above and below the water-sediment interface),
which it then solves by Gaussian elimination with backsubstitution. Typically, several hundred to
a few tens of thousands of vertical gridpoints are needed for accurate solution of the PE, depending
on source frequency and total depth of the problem. Parameters that incorporate fluid densities and
sound speed profiles for water and sediment are precalculated and stored in matrices at the begin-
ning of the program, and are updated as profiles change with range. These parameters are used to
weigh each Galerkin step in the solution of the resulting tridiagonal system.

The raw number of floating-point operations in a typical run is split roughly equally between
the Galerkin method weighting and the equation system solution steps; the matrix generation and
update routines occupy no more than a few percent of the total execution time. The weighting loop
is recurrence free and iterates once for each vertical gridpoint. The tridiagonal solver routine
contains four loops (a forward and backward substitution for above and below the interface) of the
form xi = aixi-I + bi, which is a first-order linear recurrence and not directly susceptible to vector
or parallel processing. A preliminary port of FEPE to a vector supercomputer [3] showed that more
than 85% of the total execution time was spent in solving the tridiagonal equations in the SISD
mode at roughly one-tenth of the machine's peak speed.

3.0 ALGORITHMS

Although FEPE was originally written and optimized for SISD machines where recurrence
relations carry no performance penalty, concurrent modes of computer operation, single-instruction/
multiple-data (SIMD), and multiple-instruction/multiple-data (MIMD) are able to indirectly solve

1

Robert A. Zingarelli

such recurrences by precalculating selected points in the iteration chain and subsequently working
from these or by simultaneously accumulating the final values for all equations in an iterative
manner.

3.1 Chunk Algorithms

By rewriting the original recurrence in matrix form:

[x l ,bll xO]0 1 0 1 1l l f l

1111 a,1b 011111'
(1)

we see that intermediate products of several matrices may be computed independently, and that
these products may be multiplied sequentially with the starting value xl to give a set of known xi's
scattered along the recurrence which serve as starting points for multiple independent calculations.
By allocating the work of calculating matrix products, starting points, and recurrence segments
among N processors for an n-length recurrence, with the n mod N extra points given to the first few
processors, we arrive at the MIMD algorithm given in Ref. 4 and shown in Fig. 1. By allocating
the first n - n mod N elements to N processors and then leaving the few extras for subsequent SISD

ai
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

bi

I

Fig. I - Diagram of MIMD chunk algorithm (m-chunk) showing flow of information. In first
stage of computation (leftmost), partial products of coefficients are calculated in parallel. In
second step (center), these partial products are used to serially precalculate intermediate starting
points for final, parallel, iteration of recurrence relation (right).

0

0

0

0

2

Parallel and Vector Adaptations

4

4

4

4

c_::
:Z:

3 are
I-,

"-

M"11
kat-

+

Fig. 2- Rearrangement of final step in Fig. I to allow SIMD processing.

solution, we arrive at a related SIMD algorithm. This idea, applied to only the final step for clarity,
is shown in Fig. 2. Because these two algorithms break up the problem into pieces, or chunks, and
parcel the chunks out to processors, we will refer to them as m-chunk and s-chunk, respectively,
for the MIMD and SIMD versions.

Execution times for the two algorithms, TMIMD and TSIMD, in units of time (T) to perform a
floating-point operation on a single processor, are:

TMDA 5n + 2NP(N)

TSUD =n- 5 +3N,
V(N) (2)

where P(N) is the MIMD-mode speed-up factor for N processors; usually this is linear in N but may
be reduced by interprocessor communication times. V(N) is SIMD-mode speed-up, which will be
the same as P(N) for a parallel-SIMD machine (pSIMD) or will reach some maximum value (typically
about 10) for a vector-SIMD machine (vSIMD). The SISD execution time for the same type of
processor is 2n. Given an analytic form for P(N) or V(N) these times may be minimized to find the
optimum number of processors and the maximum speed-up possible for a given n. For example, if
P(N) = N, Nopt = J-5h and the maximum speed-up is n/0 . Figure 3 shows how performance
varies with N for the MIMD algorithm for n = 2000.

3.2 Cyclic Reduction

An alternative method for computing this recurrence is the cyclic reduction algorithm discussed
in Ref. 5. The recurrence can be rewritten as follows:

4 Robert A. Zingarelli

50 100 150

NUMBER OF ACTIVE PROCESSORS

0

Fig. 3 - TSISD/TMIMD for 2000-element
recurrence relation discussed in text, and 2
to 160 active processors. Communication and
synchronization overhead has been neglected
from this calculation (i.e., P(N) = N).

200

.
x, =b,

x3 = b3 + a3b2 + a3a2 b,
i i

Xi = I bj H ak
j=l k=j+l

With some manipulation, this can be reduced to:

i
x2i(j) =xi(j) +xi (j-'). flrak

k--j-i+l

where xi (j) = xi(bj,..., bj - i + 1, aj,... aj - i + 1) .

Now define

j
Mi(j)= nfak

k=j-i+l

= nak
k=l

15

0
c-
CD

a-

0
u-
W-

CL
cn

10

5

0

(3)
0

(4)

for j Ž i

0

for j< i,
0

(5)

0

4 Robert A. Zingarelli

Parallel and Vector Adaptations 5

and Eqs. (4) and (5) can be reduced to:

x2i(j) = xi(j) + xi(j - i) Mi(j - i)

M2i(j) = Mi(j) -Mi(j - i) (6)

By initially setting xi = bi and Mi = ai for 1 < i < n and iterating Eq. (6) log2 n times (that is, by
starting with i = 1 and doubling through to i = n) for i + 1 <j < n, a solution is found in 3n log2n/
P(N) on N processors. N may be as large as n, and if P(N) = N, then the total solution time is
reduced to 3 log2 n. If n is not an even multiple of 2, this algorithm still works but must be iterated
to the next higher power of 2.

3.3 Broadband Techniques

If the same propagation path is to be used for many frequencies, the recurrence may be side-
stepped entirely by computing the recurrences for all frequencies in parallel, or by looping over
frequencies within each step on a vSIMD machine. This method has the advantage of not imposing
any additional overhead within the code to compute intermediate results, but has the disadvantages
that a user may not have enough frequencies to fill all processors and, since all frequencies are
being run effectively in parallel, may require excessive memory. If not having enough frequencies
to fill available processors is a problem, this technique can be combined with one of the chunk or
cyclic reduction algorithms.

3.4 Split Solver Sections Executed in Parallel

A final optimization is possible by running the water column and sediment solvers in parallel.
This will work only on MIMD architectures and will be efficient only if the sizes of the two pieces
of the computation are comparable. In the cases of the serial and chunk algorithms, the computation
sizes are linear in recurrence length, but with the cyclic reduction algorithm the computation sizes
go as log2n, which frequently will provide a close-enough match to make this technique worthwhile.

4.0 APPLICATIONS AND RESULTS

With four algorithms in hand, the solver routine for FEPE was rewritten in a variety of ways.
The available machines were a Cray Y-MP/8128 and a Thinking Machines Corp. CM-200. The
Y-MP has eight shared-memory processors, each of which may be operated in SISD or vSIMD
mode. In turn, the processors may be operated independently or in MIMD mode. The CM-200 can
be configured to operate on 8192 or 16,384 processors in a nearly pure pSIMD mode. We use the
term "nearly pure pSIMD" because the CM-200 instruction set has masking operations that allow
two different operations to proceed concurrently on different groups of processors, giving this
machine a very limited MIMD capability.

The problem chosen was the penetrable wedge benchmark [6], with either 1 or 64 frequencies,
with a 0.5-m depth step down to 2 km, which requires 4002 vertical gridpoints. The water column
varies from 200 to 0 m in depth, so executing the two parts of the solver in parallel will make little
difference in the chunk algorithms but could lower the execution time of the cyclic reduction
algorithm by 43% due to the log2 n, rather than linear, time dependence of this algorithm.

Robert A. Zingarelli

Table 1 gives execution times per frequency for the presented algorithms applied to one Y-MP
processor, eight Y-MP processors in MIMD mode, and 4002 CM-200 processors. Figure 4 shows
the reciprocal of selected times from this table, along with reciprocal of charged processor times,
to give an indication of the overall cost and speed in propagation paths computed per second.

Of the single-frequency calculations, the s-chunk algorithm on a single Y-MP processor proved
to be the most cost effective. It ran the benchmark case 40% faster than the original version. The
m-chunk algorithm, while fast and interesting, was not especially efficient because all calculations
were carried out in scalar mode on eight vector processors. This algorithm would be better suited
for parallel machines made up of scalar processors; various hypercube configurations and networked
workstations come to mind here.

Table 1 - Wallclock Execution Times Per Frequency for Various Algorithms on
Cray Y-MP/8 and CM-200 using 4002 Processors. Unsuitable Algorithms Marked
"Not Applicable." Multifrequency Versions of s-chunk and the Cyclic Reduction
Algorithm were Not Implemented (see text).

Cyclic Multifrequency/
Machine Original s-chunk r-chunk Reduction Multifrequency r-chunk

Y-MP 5.29 3.77 N/A 38.62 1.46 N/A

Y-MP/8 N/A N/A 3.05 N/A 1.21 0.63

CM-200 N/A N/A N/A 108.44 N/A N/A

ORIGINAL

s-chunk

z rn-chunk0
co

> CYCLIC REDUCTION (x1O)

MULTIFREQUENCY

MULTIFREOUENCY/rn-chunk

0 1

PATHS/SECOND

Fig. 4- Speed, in propagation paths per second for penetrable wedge benchmark, for general
versions of FEPE. Shaded bars are paths per wallclock second; black bars are paths per processor
second.

0

0

0

2

0

6

0

0

0

0

0

0

0

i
i6

i

Parallel and Vector Adaptations 7

Overall on the Y-MP, the multifrequency versions quadrupled the performance, both in processor A,
and total execution time, of the single-frequency versions. This improvement is due to the vectorized
inner loop over frequency, allowing efficient use of the processors. The original serial recurrence
and m-chunk solvers were rewritten using this frequency vectoring technique. The floating-point
rates per processor for these two versions were in the 150-200 million per second range (Mflops),
near the peak speed for this type of machine.

Because the cyclic reduction algorithm performed poorly on the Y-MP, it was implemented on
only a single processor. Peak speeds were in the 50 Mflops range due to irregular-stride memory
access. On the CM-200, this same algorithm performed at only 0.36% of its theoretical peak rate
for 4002 processors, despite extensive hand-optimization. After lengthy investigation and discus-
sion with NRL Connection Machine Facility personnel, we have decided that router communication
between processors is the limiting factor in this type of calculation. Clearly, while interesting, the
cyclic reduction algorithm is unusable for this problem without extensive machine-level coding or
specialized hardware.

A combination of the s-chunk and multifrequency algorithms could run efficiently on the
CM-200. For example, a problem with 4002 vertical gridpoints and 200 frequencies would optimally
run on 16,334 processors with a potential speed-up factor over 3000. Unfortunately, the s-chunk
algorithm would require extensive router communications between processors and would probably
not reach such high speeds.

Of the various algorithms and machine combinations tried, the four most cost-effective versions
ran on the Y-MP:

* FEPE64v: single-frequency s-chunk algorithm on one processor; 40% faster than original with
scalar solver.

* FEPE64mfv: multifrequency vectored adaptation of original solver on single processor; achieves
near-peak speed on Y-MP.

* FEPE64mfvp: same as mfv version but weighting loop parallelized as well; can achieve 40%
greater speed than vector-only version but is about 10% more costly to run.

* FEPE64mfvc: multifrequency vectored m-chunk algorithm allows all eight Y-MP processors
to work in parallel and vector modes.

Additionally, the solver routine for the single-frequency m-chunk version, solvep, has been left
in place as a guide for understanding the solver in FEPE64v and as a frame for adaptation to other
MIMD machines.

The input file remains unchanged for the single-frequency version, however, the second line of
the input file for the multifrequency version has been modified

from frequency source depth receiver depth

to number of frequencies first frequency last frequency source depth receiver depth

Beyond this change, the input file is as documented in Ref. 1.

0

8 Robert A. Zingarelli

5.0 SUMMARY

FEPE has been optimized for SIMD and MIMD machines with varying degrees of success.
Examination of the original code revealed that most of the execution time is spent solving the
recurrence xi = axi - I + bi. A chunk algorithm that makes this recurrence parallelizable was adapted
for SIMD machines. The cyclic reduction algorithm performed poorly for the test cases used.
Vectoring over frequencies was shown to be an efficient way of circumventing the recurrence
bottleneck when broadband solutions are desired, and combined well with the m-chunk algorithm 0
on an MIMD machine made up of shared-memory SIMD processors.

6.0 ACKNOWLEDGMENTS

This work was sponsored by Program Element 0602435N, under the direction of Dr. J. T. Warfield,

Program Manager, Office of Naval Research. I thank Dr. Guy V. Norton, NRL Project Leader, for
his encouragement and support.

7.0 REFERENCES

[1] M. D. Collins, "FEPE User's Guide," Naval Research Laboratory, Stennis Space Center MS, 0
NORDA Tech. Note 365, 1988.

[2] M. D. Collins, "Benchmark Calculations for Higher-Order Parabolic Equations," J. Acoust. Soc.
Am. 87, 1535-1538 (1988).

[3] R. A. Zingarelli, "PE Codes: Supercomputer vs. Workstation Benchmarks," Naval Research
Laboratory, Stennis Space Center MS, NRL/MR/7181--93-7015, January 1993.

[4] S. Brawer, Introduction to Parallel Programming (Academic Press, San Diego, CA, 1989),
pp. 200-211.

[5] H. S. Stone, "An Efficient Parallel Algorithm for the Solution of a Tridiagonal Linear System
of Equations," NASA Report 5424, 1971.

[6] F. Jensen and C. M. Ferla, "Numerical Solutions of Range Dependent Benchmark Problems in
Ocean Acoustics," J. Acoust. Soc. Am. 87, 1499-1510 (1988).

0

